THE CONTINUITY OF LINEAR AND SUBLINEAR CORRESPONDENCES

MASOUMEH AGHAJANI

1 Department of Mathematics, Shahid Rajaee Teacher Training University, P. O. Box 16785-136, Tehran, Iran.
aghajani238@gmail.com

ABSTRACT. We investigate the continuity of linear and sublinear correspondences defined on cones in normed spaces.

1. INTRODUCTION

An investigation of linear correspondences defined on cones in normed spaces was given in [4]. In particular, the existence of a unique iteration semigroup of continuous linear selections of an iteration semigroup of linear correspondences defined on a cone with a finite cone basis is shown in [4]. It is shown in [5] that a regular cosine family consisting of super-additive mappings continuous and homogeneous with respect to positive rationals with compact values has exponential growth. The continuity of a regular cosine family consisting of continuous and additive mappings with compact and convex values defined on cones with nonempty interior in Banach spaces is established in [5]. A generalization of these results in normed spaces can be found in [1]. In this paper, we reintroduce linear and sublinear correspondences on cones in real normed spaces and give some results on continuity. A general form of linear and sublinear correspondences with convex and compact values

2010 Mathematics Subject Classification. Primary 47A06; Secondary 54C60.
Key words and phrases. Linear correspondence, sublinear correspondence, cone.
* Speaker.
is given. We also present some results on invertibility of selections of sublinear correspondences.

We begin with some basic concepts which are needed. A subset C of a real normed space X is a cone if $tC \subseteq C$ for every $t > 0$. A linearly independent set E is said to be a basis of cone C if

$$C = \{x \in X : x = \sum_{i=1}^{n} \lambda_i e_i, n \in Ne_i \in E; \lambda_i \geq 0, i = 1, \cdots, n\}$$

From here we assume that X and Y are two real normed spaces and C is a convex cone of X. Let $c(X)$ denote the set of all nonempty and compact subsets of X and $cc(X)$ be the family of all convex sets of $c(X)$. We recall that a correspondence φ on any subset E of X is a relation which assigns a nonempty set of Y to each element of E. We use the notations $\varphi : C \rightarrow c(Y)$ and $\varphi : C \rightarrow cc(Y)$ for correspondences with compact values and convex and compact values, respectively.

Definition 1.1. [4] A correspondence $\varphi : C \rightarrow Y$ is called:

1. linear if $\varphi(x+y) = \varphi(x) + \varphi(y)$ (additivity) and $\varphi(\lambda x) = \lambda \varphi(x)$, for every $x, y \in C$ and $\lambda > 0$.
2. sublinear if $\varphi(x+y) \subseteq \varphi(x) + \varphi(y)$ and $\varphi(\lambda x) = \lambda \varphi(x)$, for every $x, y \in C$ and $\lambda > 0$.

It is clear that every linear correspondence is sublinear but the converse is not true.

Definition 1.2. [5] A correspondence $\varphi : C \rightarrow Y$ is said to be bounded if for every bounded subset E of C the subset $\varphi(E)$ is bounded in Y.

We recall that a neighborhood of a set A is any set B for which there is an open set V satisfying $A \subseteq V \subseteq B$

Definition 1.3. [5] A correspondence $\varphi : C \rightarrow Y$ is said to be:

1. upper semicontinuous at the point x if for every neighborhood U of $\varphi(x)$, there is a neighborhood V of x such that $z \in V$ implies $\varphi(z) \subseteq U$. Also φ is upper semicontinuous on C, if it is upper semicontinuous at every point of C.
2. lower semicontinuous at the point x if for every open set U that $\varphi(x) \cap U \neq \emptyset$ there is a neighborhood V of x such that $z \in V$ implies $\varphi(z) \cap U \neq \emptyset$. φ is lower semicontinuous on C, if it is lower semicontinuous at every point of C.
3. continuous at x if it is both upper and lower semicontinuous at x. It is continuous if it is continuous at each point of C.

For each pair of nonempty and compact subsets A and B of X, the Hausdorff metric h is defined as

$$h(A, B) = \max\{\sup_{a \in A} d(a; B), \sup_{b \in B} d(b, A)\}$$

where $d(a, B) = \inf_{b \in B} \|a - b\|$. Every correspondence with compact values $\varphi : X \rightarrow Y$ is continuous if and only if $\varphi : X \rightarrow (c(Y), h)$ is continuous in the sense of a single-valued function (see Theorem 17.15 in [3]).

2. Main results

In this section we study the continuity of linear and sublinear correspondences defined on cones with a finite basis in real normed spaces. We start with the following.

Lemma 2.1. [5] A sublinear correspondence $\varphi : C \rightarrow Y$ is bounded if and only if there exists a positive constant M such that $\|\varphi(x)\| := \sup\{\|y\| : y \in \varphi(x)\} < M\|x\|, (x \in C)$.

Lemma 2.2. [2] Let $0 \in C \subseteq X$. If $\varphi : C \rightarrow Y$ is a bounded-valued sublinear correspondence, then φ is upper semicontinuous at zero if and only if φ is bounded.

Theorem 2.3. [2] Let $E = \{e_1, e_2, \ldots, e_n\}$ be a basis of C. If $\varphi : C \rightarrow c(Y)$ is linear, then φ is continuous.

Corollary 2.4. [2] Let $E = \{e_1, e_2, \ldots, e_n\}$ be a basis of C. If $\varphi : C \rightarrow C$ is a linear correspondence, then

$$\varphi(x) = \{l^{-1}Al(x)\}_{A \in M_\varphi}, \quad (0 \neq x \in C)$$

and φ is lower semicontinuous at every point.

Corollary 2.5. [2] Let $E = \{e_1, e_2, \ldots, e_n\}$ be a basis of C. If $\varphi : C \rightarrow c(Y)$ is a sublinear correspondence, then

- φ is upper semicontinuous at every point;
- moreover, if $\varphi : C \rightarrow C$, then for every $x \in C \{0\}$ we have

$$\varphi(x) \subseteq \{l^{-1}Al(x)\}_{A \in M_{\text{col}(\varphi)}},$$

where l is the isomorphism given by $l(\sum_{j=1}^{n} \lambda_j e_j) = (\lambda_1, \ldots, \lambda_n)^T$

The following example shows that a sublinear correspondence need not be lower semicontinuous at every point.
Example 2.6. [2] Define $\varphi : [0; +\infty) \times [0; +\infty) \rightarrow [0; +\infty) \times [0; +\infty)$ by

$$\varphi(x, y) = \begin{cases}
\{(0, 0)\} & x \geq 0, y > 0; \\
\{(t, 0) : 0 \leq t \leq x\} & x \geq 0, y = 0.
\end{cases}$$

It is easy to see that the sublinear correspondence φ is not lower semi-continuous at every point $(x, 0)$ where $x > 0$.

For the rest of this section we consider, inspired by [3], the relations between Hausdorff distance of the unit matrix and multimatrix of a linear correspondence and invertibility of its selections. Every cone C with a finite basis $E = \{e_1, e_2, \cdots, e_n\}$ induces a norm on the vector space of all $n \times n$ matrices $M_n(\mathbb{R})$ by

$$\|A\| = \sup\{\|\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j a_{ij} e_i\| : \sum_{j=1}^{n} \lambda_j e_j \in C, \|\sum_{j=1}^{n} \lambda_j e_j\| = 1\}, \quad (2.1)$$

for every $A = [a_{ij}]$ (see [3]). In the following, h_1 and I will denote the Hausdorff metric derived from the norm given in (2.1) and the unit matrix, respectively.

Lemma 2.7. [2] Suppose that C has a finite cone basis. If $\varphi : C \rightarrow c(C)$ is a linear correspondence, then

$$h_1(M_\varphi, \{I\}) = \sup\{h(\varphi(x), \{x\}) : x \in C, \|x\| = 1\}.$$

Corollary 2.8. [2] Suppose that C has a finite cone basis. If $\varphi : C \rightarrow c(C)$ is a sublinear correspondence, then

$$h_1(M_\varphi, \{I\}) \geq \sup\{h(\varphi(x), \{x\}) : x \in C, \|x\| = 1\},$$

where $\hat{\varphi}$ is given by $\hat{\varphi}(x) = \sum_{j=1}^{n} \lambda_j \hat{c}(\varphi(e_j))$.

Corollary 2.9. [2] Let $\{e_1, e_2, \cdots, e_n\}$ be a finite basis of C. Then, there exists an $\eta > 0$ such that for every sublinear correspondence $\varphi : C \rightarrow c(C)$ satisfying $h_1(M_{\text{co}(\varphi)}, \{I\}) < \eta$, each $A \in M_\varphi$ is invertible.

References