THE BIRKHOFF-JAMES ORTHOGONALITY AND NORM PARALLELISM FOR THE p-SCHATTEN CLASS

ALI ZAMANI

Zamani.ali85@yahoo.com

ABSTRACT. Utilizing the Birkhoff–James orthogonality, we present a characterization of the norm parallelism for the trace-class operators on a finite dimensional Hilbert space. In addition, we consider the norm parallelism problem for the p-Schatten class.

1. INTRODUCTION

The most commonly used definition of orthogonality in normed linear spaces, with the norm not necessarily coming from an inner product, is the Birkhoff–James orthogonality [3]: if x and y are elements of a normed linear space $(X, \| \cdot \|)$, then x is orthogonal to y in the Birkhoff–James sense, in short $x \perp_B y$, if

$$\| x + \mu y \| \geq \| x \|, \quad (\mu \in \mathbb{C}).$$

It is easy to see that in an inner product space the Birkhoff–James orthogonality becomes the usual one.

When X is a Hilbert C^*-module, some interesting characterizations of Birkhoff–James orthogonality were given in [1, 2].

Recall that, an element $x \in X$ is said to be the norm parallel to another element $y \in X$, denoted by $x \parallel y$ if

$$\| x + \lambda y \| = \| x \| + \| y \|$$

2010 Mathematics Subject Classification. Primary 47B10; Secondary 47A30, 46B20.

Key words and phrases. Birkhoff–James orthogonality, norm parallelism, Schatten p-norm.
for some $\lambda \in \mathbb{T} = \{\alpha \in \mathbb{C} : |\alpha| = 1\}$; see [4].

In the case of inner product spaces the norm parallel relation is exactly the usual vectorial parallel relation, that is, $x \parallel y$ if and only if x and y are linearly dependent. In the case of normed linear spaces two linearly dependent vectors are norm parallel, but the converse is false in general.

Some characterizations of the norm parallelism for elements of C^*-algebras and Hilbert C^*-modules were given in [4, 5].

Next we define the von Neumann-Schatten classes C_p ($1 \leq p < \infty$). Let $B(H)$ denote the algebra of all bounded linear operators on a complex separable Hilbert space H and let $T \in B(H)$ be compact, and let $s_1(T) \geq s_2(T) \geq \cdots \geq 0$ denote the singular values of T, i.e., the eigenvalues of $|T| = (T^*T)^{\frac{1}{2}}$ arranged in their decreasing order. The operator T is said to be belong to the Schatten p-classes C_p if

$$\|T\|_p = \left[\sum_{i=0}^{\infty} s_i(T)^p \right]^{\frac{1}{p}} = \left[\text{tr}(T^p) \right]^{\frac{1}{p}} \quad 1 \leq p < \infty,$$

where tr denotes the trace functional. Hence C_1 is the trace class and C_2 is the Hilbert-Schmidt class.

The main purpose of this talk is to characterize the Birkhoff-James orthogonality and norm parallelism in C_p. Throughout this paper we assume that H is a finite dimensional Hilbert space.

2. Main results

The following theorem characterizes the Birkhoff-James orthogonality in the space C_1.

Theorem 2.1. Let $T, S \in C_1$. Let T be invertible and let $T = U|T|$ be the polar decomposition of T. Then the following statements are equivalent:

(i) $T \perp_B S$.

(ii) $\text{tr}(U^*S) = 0$.

Now we present a characterization of norm parallelism for the trace-class operators.

Theorem 2.2. Let $T, S \in C_1$ be invertible and $T = U|T|, S = V|S|$ be their polar decompositions. Then the following statements are equivalent:

(i) $T \parallel S$.

ORTHOGONALITY AND PARALLELISM FOR THE \(p \)-SCHATTEN CLASS

(ii) \(\|T\|_1 \left| \text{tr}(U^*S) \right| = \|S\|_1 \text{tr}(|T|) \).

(iii) \(\|S\|_1 \left| \text{tr}(V^*T) \right| = \|T\|_1 \text{tr}(|S|) \).

In the next theorem we characterize the Birkhoff–James orthogonality in the space \(C_p (1 < p < \infty) \).

Theorem 2.3. Let \(T, S \in C_p \) and let \(T = U|T| \) be the polar decomposition of \(T \). Then the following statements are equivalent:

(i) \(T \perp_B S \).

(ii) \(\text{tr}(|T|^{p-1}U^*S) = 0 \).

We finish this section with a characterization of the norm parallelism for the \(p \)-Schatten class.

Theorem 2.4. Let \(T, S \in C_p \) and let \(T = U|T|, S = V|S| \) be their polar decompositions. Then the following statements are equivalent:

(i) \(T \parallel S \).

(ii) \(\|T\|_p \left| \text{tr}(|T|^{p-1}U^*S) \right| = \|S\|_p \text{tr}(|T|^p) \).

(iii) \(\|S\|_p \left| \text{tr}(|S|^{p-1}V^*T) \right| = \|T\|_p \text{tr}(|S|^p) \).

References